

STUDY LAUNCH WEBINAR

BOOSTING BUILDING EFFICIENCY UNLOCKING EPC GAINS WITH BACS

13:30 - 14:15 Keynote Speach from DG ENER and introduction to the Study

14:15 - 15:30 Panel Discussion and Q&A

THURSDAY 28 NOVEMBER 13:30-15:30

HOUSEKEEPING RULES

Audio & Video: All participants are muted, and cameras are off by default Join us on slido.com using the code #4270 740 Q&A: Use the Slido Q&A feature to submit your questions Interactive Polls: polls and word clouds via Slido Recording: This session is being recorded, and the recording will be shared Stay Engaged: Connect & Engage with us on LinkedIn @eubac

Slido

STUDY LAUNCH WEBINAR

MARCO MORINI, POLICY OFFICER, **DG ENER**

Delivering on the European Green Deal and Fit for 55

The Smart Building Measures in the recast EPBD

European Commission

Boosting Building Efficiency: Unlocking EPC Gains with BACS – 28 November 2024

Marco Morini

European Commission – DG ENERGY

Unit B3 - Buildings and Products

Objectives of the recast EPBD

entered into force in May 2024

Contribute to reducing GHG emissions & final energy **consumption** by 2030

Long term vision for buildings' contribution to 2050 targets

Renovation Wave Strategy: aims at doubling renovations by 2030 and foster deep renovations

Climate target plan 2030: reduce buildings' GHG emissions by 60%, their final energy consumption by 14% and energy for heating and cooling by 18%.

RePowerEU and EU Save Energy Communication further increasing ambition

neutral economy 90% of net GHG emissions

2050 Long Term Strategy: climate-

Climate Target Plan 2040: reduction of

Focus Areas of the recast EPBD

Renovation

- Minimum Energy Performance Standards
- National trajectories for the progressive
- renovation of the residential building stock
 National Building Renovation Plans (BRPs)

Enabling framework

- Strengthened Energy Performance Certificates
- Renovation passports
- Sustainable finance & energy poverty
- One-stop-shops
- Deep renovation standard
- National energy performance databases

Decarbonisation

- Introduction of zero-emission buildings
- as standard for new buildings
- Solar deployment in buildings
- Calculation of whole life cycle carbon Phasing out incentives for fossil fuels and new legal basis for national bans

Modernisation & system integration

- Infrastructure for sustainable mobility
- Smart Readiness Indicator
- Indoor air quality: ventilation and other technical
- building systems
 Digitization, data access and exchange

European Commission

Key renovation measures for non-residential and residential building stock (Article 9)

Non-residential: Minimum Energy **Performance Standards (MEPS)**

Non-residential building stock 2020

Residential: trajectory to reduce the average primary energy use

Provisions on Smart Buildings & technologies Articles 11, 13

- Expansion of existing provisions on **BACS for large nonresidential buildings***, introduction of IEQ monitoring as of 29 May 2026 and lower **70 kW threshold** as of 2030
- Mandatory monitoring and control functionalities for **residential buildings***, new or undergoing major renovation + the capacity to react to external signals & adjust the energy consumption. Possible exclusion for single-family houses
- Gradual introduction of **requirements for automatic** lighting controls in large non-residential buildings*
- ZEBs to offer* the **capacity to react to external signals** & adapt its energy use, generation or storage

* When technically, economically and functionally feasible

Provisions on Indoor Environmental quality (Articles 1, 2, 5, 7, 8, 13, 20, 23 + Annexes)

- Multiple references Comprehensive approach
- Clear visibility in Article 1
- Definition of **Indoor Environmental Quality**
- Optimal IEQ to be **addressed in new & renovated buildings**, and accounted for Minimum Energy Performance Requirements
- Measuring & control devices for IAQ
- Integration of IEQ monitoring in BACS
- Visibility of IEQ in SRI, EPCs, Building Renovation Passports
- Policies and Measures addressing the improvement of IEQ in **Building Renovation Plans**

Energy performance certificates Articles 19, 20, Annexes V, VI

Main changes introduced:

- Energy performance **classes** from A to G
- Common template with energy, GHG and other indicators + voluntary indicators
- Extension of scope of the **recommendations** to improve the building
- More trigger points for **issuing** and accessing EPCs

Strengthened **quality** framework

European Commission

Smart Readiness Indicator Article 15, Annex IV

- The Commission is tasked to submit a report on the testing phase of the SRI by June 2026
- Taking into account the outcome of the report, the Commission shall adopt a delegated & implementing act by June 2027 requiring the application of the SRI in large non-residential buildings

The SRI is a common EU framework for rating the smart readiness of buildings, aiming to promote the use of smart building technologies in EU.

It assesses buildings/units based on their capacity to satisfy 3 key functionalities.

- Delegated Reg. (EU) <u>2020/2155</u> established an optional common EU scheme
- Implementing Reg. (EU) <u>2020/2156</u> detailed the technical implementation modalities

Optimise energy efficiency and overall in-use performance

Adapt their operation to the needs of the occupant

Adapt to signals from the grid (energy flexibility)

European Commission

Overview of the MS test phases

ं

Final Remarks

- The use of smart technologies in buildings can be a cost-effective way to contribute to **healthier and more comfortable buildings** with **lower energy consumption** and carbon emissions, as well as to the **balance and flexibility of the electricity grid**.
- Smart and digitalized energy systems are **key to decarbonization**, e.g. to support the integration of increasing shares of renewables; enable the electrification of end-uses; strengthen the overall resilience of the system; and empower consumers.
- When relevant and correctly installed, **BACS will play a crucial role** in optimizing the level of Smart Readiness of buildings and improving buildings energy performance as well as ensuring the compliance with several new provisions (including MEPSs).

Thank you!

🛇 European Union 2<mark>(</mark>

Unless otherwise noted the reuse not owned by the EU, permission

THE R. P. LEWIS CO., LANSING MICH.

sed under the <u>CC BY 4.0</u> from the respective right by use or reproduction of elements that are

ank you for your attention

STUDY LAUNCH WEBINAR

LEONARDO MONDONICO, CONSULTANT AND RESEARCHER, POLITECNICO DI MILANO

Energy & Strategy

Building Automation and Control Systems impact on EPC classes in Europe

Leonardo Mondonico

POLITECNICO MILANO 1863 SCHOOL OF MANAGEMENT

Index

Building Automation and Control Systems impact on EPC classes in Europe

Methodology description

Used databases and UNI ISO

- Buildings energy consumption data → "Intelligent Energy EU Program", classified by building types.
- Thermal energy savings → UNI EN ISO 521201-1 standard, matching the database building types with ISO categories.

ISO 521201-1 building types					
Sector	Building type				
	Offices				
	Wholesale and retail trade service				
	Schools				
Non-	Hospital				
residential	Hotels				
	Restaurants				
	Lecture hall				
	Others (sport, storage, ind. Buildings)				
Residential	Single family house, Apartment block, Others				

E&S database building types				
: estimated value		THERMAL ENERGY SAVINGS		
Sector	Building type	А	В	
Non- residential	Offices	54%	47%	
	Trade	62%	53%	
	Education	33%	27%	
	Health	34%	31%	
	Hotels and Restaurants	46%	36%	
	Others	49%	39%	
	Single family - Terraced houses			
Residential	Multifamily houses	26%	20%	
	Apartment blocks			

Methodology description

Calculation method

distribution across building types.

- 2. Evaluation of **total PED consumption distribution** for residential and non-residential.
- 3. Division in "fictitious", **universal EPC classes** due to the difference in classes definitions across countries.

Costs efficiency of BACS

The cost of BACS and other solutions

The cost of BACS can be significantly lower than other efficiency solutions, considering the possible energy savings.

		Class A	Class B
Sector	Building type	[€/sqm]	[€/sqm]
	Offices	7,5	5,0
	Trade	7,5	5,0
Non-	Education	5,5	3,5
residential	Health	5,5	3,5
	Hotels and Restaurants	5,5	3,5
	Others	7,5	5,0
	Single family Terrored houses	10.0	6.5
	Single family - Terraced houses	10,0	0,5
Residential	Multifamily houses	7,5	5,0
	Apartment blocks	7,5	5,0

Example: 110 sqm apartment • BACS (thermal) → 26% saving - 1,100€ • Other systems combined → 80% saving -45,000€ SYSTEM INVESTMENT **Thermal envelope** 27.000€ **Efficient windows** 18.000€ Heat pump installation 7.000€ **Condensing boiler installation** 3.000€ Photovoltaic panels 3.700€

Costs efficiency of BACS

Thermal BACS case study

- BACS require an initial investment in the order of a few thousands' euros, possibly limiting adoption.
- Considering the investment over BACS lifespan (10 years), the benefits achieved allow for a **significant return on the investment**, with a **payback time of 3 to 4 years** (considering BACS for thermal application) varying with BACS class.

BACS impact on energy performance

The impact of BACS on EPC classes

BACS adoption can achieve an EPC class improvement of up to **two classes**.

The performance improvement is especially **highlighted for lower-class** buildings and **nonresidential** sector.

BACS can thus be a **remarkably effective and simple way** for improving energy efficiency **in older, less energy-efficient nonresidential buildings.**

	RESIDE	NTIAL	NON-RESIDENTIAL		
EPC CLASS	Class A BACS	Class B BACS	Class A BACS	Class B BACS	
А	0,1	0,1	0,2	0,1	
В	0,4	0,3	0,3	0,3	
С	0,6	0,5	0,6	0,5	
D	0,8	0,6	0,8	0,7	
E	1,0	0,8	1,2	1,0	
F	1,2	0,9	1,6	1,4	
G	1,9	1,6	2,0	1,8	

BACS impact on energy performance

The EPC impact and required investment | Non-residential

EPC class improvement can be achieved through BACS extensively for a significant portion of buildings.

For non-residential buildings, assuming a full adoption of class A and B in different geographical regions, the cost of this implementation is in the order of few bln€ for each region.

		GEOGRAPHICAL REGION			
NON-RES	NON-RESIDENTIAL SECTOR		Nordic	Continental	Oceanic
#buildi	ngs (mln units)	3,2	0,3	1,3	4,6
Class A	EPC improvement	1,1 classes	1,3 classes	1,1 classes	1,1 classes
	Cost* (bln€)	5 - 7	0,8 - 1,2	3 - 7	20 – 25
	EPC improvement	1,0 classes	1,1 classes	0,9 classes	1,0 classes
	Cost* (bln€)	3 - 5	0,5 - 1	2 - 4	13 - 18

BACS impact on energy performance

The EPC impact and required investment | Residential

For the residential sector, the investment is higher due to the higher number of units.

Assuming a **full adoption of class A and B** in different geographical regions, the cost of this implementation is in the order of **10-50 bln€ for each region**.

The possible EPC improvement however varies, prioritizing regions with higher benefits.

			GEOGRAPHICAL REGION			
	RESIDENTIAL SECTOR		Mediterranean	Nordic	Continental	Oceanic
\smile	#buildings (mln units)		26,1	2,5	16,1	52,4
Class A		EPC improvement	0,8 classes	1,0 classes	1,0 classes	0,8 classes
		Cost* (bln€)	30 - 35	2 - 4	15 - 25	60 – 70
Class B		EPC improvement	0,6 classes	0,8 classes	0,7 classes	0,6 classes
	Cost* (bln€)	20 - 25	1 - 3	10 - 15	40 - 50	

Role of BACS in MEPS achievement

MEPS for non-residential sector

- BACS can significantly help with MEPS achievement, renovating buildings in a cost-efficient way.
- 16% threshold (2030) → 570 mln sqm to be improved 4 bln€ total investment (class A)
- 26% threshold (2033) → 1,0 bln sqm to be improved 7 bln€ total investment (class A)

			Medit.	Nordic	Continental	Ocear	nic
	#buildings	s (mln units)	3,2	0,3	1,3		4,6
#buildi	ings to be in	nproved (mln units)	0,51 → 0,83	0,05 → 0,08	0,21 → 0,34	0,74 ·	→ 1,20
Surfa	ace to be im	proved (mln sqm)	130,6 → 180,9	21,9 → 32,6	69,8 → 124,8	350,5 →	• 680,1
Class	A	Cost (mIn€)	940 → 1.290	130 → 200	520 → 890	2.490 -)	• 4.740
Class	B	Cost (mIn€)	620 → 860	90 → 130	350 → 590	1.650)	• 3.130
ies				16% threshold requirement \rightarrow 26% threshold requirement			10

Role of BACS in MEPS achievement

MEPS for residential sector

- BACS can significantly help with MEPS achievement, reducing PED¹ at low costs.
- 16% PED reduction (2030) → 25 mln buildings to be improved 34 bln€ total investment (class A)
- 22% PED reduction (2035) → 35 mln buildings to be improved 48 bln€ total investment (class A)

		Medit.	Nordic	Continental	Oceanic
Total #buildings (mln units)		26,1	2,5	16,1	52,4
Require	ed PED reduction (TWh)	64,7 → 88,9	5,7 → 7,8	40,0 → 55,1	140,8 → 193,3
Class A	#bld to be impr. (mln)	5,5 → 8,4	0,9 → 1,2	5,0 → 6,6	13,6 → 18,9
	BACS cost (mIn€)	8.600 → 11.900	1.000 → 1.400	5.800 → 8.400	19.000 → 26.200
Class B	#bld to be impr. (mln)	8,1 → 11,7	1,2 → 1,6	6,4 → 8,9	17,8 → 24,6
	BACS cost (mIn€)	7.900 → 11.000	800 → 1.200	4.900 → 7.000	15.600 → 21.400
205	POLITECNICO MILANO 1863 (1) Prime	ary Energy Demand	16% reduction requirement \rightarrow 26% reduction requirement		

Key findings

Energy and cost efficiency

The implementation of BACS can be achieved at **remarkably low costs** compared to other energy efficiency measures. The installation of these systems requires a relatively **short timeframe** allowing rapid improvements in building performance.

Buildings energy performance improvement

BACS adoption can lead to **significant building's energy performance improvements**, increasing efficiency **by at least one EPC class**. Additionally, the achievement of Zero Energy Buildings results to be difficult without these systems.

Important BACS role in achieving MEPS

These technologies can **contribute significantly to achieving Minimum Energy Performance Standards** and enable the integration of other efficiency solutions leading to the "**BACS multiplier effect**".

The support for BACS

How to increase the adoption

Governments should consider creating **incentive programs** that encourage the adoption of high-level BACS (subsidies, tax incentives, or low-interest loans for initial installation costs).

Regulatory frameworks like the EPBD should be properly implemented to **prioritise the integration of BACS** in buildings, especially those with poor energy performance.

Raising awareness about the benefits of BACS among building owners, facility managers, and the local authorities public is essential.

PANEL DISCUSSION

MARCO MORINI, POLICY OFFICER, DG ENER

> GAIA BALZARINI, EU.BAC CHAIR OF ADVOCACY DANFOSS

LEONARDO MONDONICO, CONSULTANT AND RESEARCHER, POLITECNICO DI MILANO

BONNIE BROOK, SIEMENS

3

C

PAUL DEVERELL, **BUSINESS DIRECTOR,** FUTURE2

CECILIA HUGONY, CEO TEICOSGROUP

EU.BAC VICE PRESIDENT,

JOIN US IN CREATING SAFER, SMARTER, AND MORE ENERGY-EFFICIENT BUILDINGS!

